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Perovskite  solar  cells  (PSCs)  are  taking  a  leading  position
in thin-film optoelectronic devices due to their excellent optic-
al, physical and electrical properties[1−4]. Nevertheless, the sta-
bility  issue  of  metal  halide  perovskite  precursor  solution
severely retards the future industrialization of PSCs[5−7]. In stoi-
chiometry,  slight  solution  composition  change  will  induce
severe  degradation  of  device  performance.  Generally,  the
widely-used  formamidine-based  perovskite  (FAPbI3,  FA  =
CHN2H4

+) with ideal bandgap (~1.48 eV) have two crystal struc-
tures:  non-perovskite  yellow δ-phase  and  three-dimensional
photosensitive  perovskite  black α-phase[8−10].  Owing  to  the
large  size  of  FA+ cation,  black α-phase  perovskite  can  easily
transform  into  yellow δ-phase  non-perovskite[11].  At  present,
introducing  CH3NH3

+ (MA+)  as  a  “transition  agent”  to  help
FA+-based perovskite recrystallize vertically and yield a stable
photoactive α-phase  is  widely  adopted[12].  Deprotonation  of
organic  amine-organic  cation  compounds  in  mixed  organic
cation precursor can cause precursor degradation. Iodide oxid-
ation can also deteriorate device performance and repeatabil-
ity of PSCs.

FA+ and  MA+ undergo  reversible  deprotonation  reac-
tions  in  precursor  solution  to  generate  FA  and  MA,  respect-
ively  (Fig.  1(a)).  The  perovskite  precursor  solution  with  FA+

and  MA+ showed  evident  degradation.  Wang et  al. revealed
that  FAI  could  continuously  consume  the  generated  MA  to
form a condensation product[13]. The addition elimination reac-
tion of  amino group in MA and the imine group in FAI  forms
N-methyl  FAI  (MFAI).  The  formed  MFAI  also  has  an  imine
bond, which can undergo the second addition elimination re-
action with MA to form N, N’-dimethyl FAI (DMFAI) (Fig.  1(b)).
Recently,  Dong et  al.  clarified  that  FA−MA+ reaction  plays  a
dominant role in the degradation of precursor solution rather
than  MA−FA+ reaction.  Though  the  proposed  reaction  paths
(Fig.  1(c))  for  FA−MA+ reaction  and  MA−FA+ reaction  gener-
ate  the  same  product  of  MFA+ and  NH4

+,  the  kinetic  calcula-
tion  shows  that  their  reaction  pathways  are  different.  As
shown  in Fig.  1(d)  and 1(e),  MA−FA+ reaction  is  a  single-mo-
lecule nucleophilic substitution (Route 1), while FA−MA+ reac-
tion  is  a  bimolecular  nucleophilic  substitution  (Route  2).  Be-

cause  the  activation  energy  for  the  rate-determining steps  in
the  two  processes  is  similar,  two  processes  may  occur  in  the
precursor.  However, MA−FA+ route is more difficult due to its
complexity.  In  contrast,  the  FA−MA+ reaction  route  is  easier
to  proceed,  leading  to  the  degradation  of  precursor
solution[14].  The oxidation of iodide ions can also seriously af-
fect the stability of the precursor[15].

Li et  al.  introduced  diethyl(hydroxymethyl)phosphonate
(DHP),  and  the  vacant  orbital  of  phosphorus  atom  can  inter-
act  with  the  lone pair  electron of  I– to  inhibit  the  deprotona-
tion of MA+[16]. The color of the precursor solution with DHP re-
mained unchanged after  35 days at  room temperature,  while
the  color  for  the  unmodified  solution  became  deeper  due  to
the  degradation  of  the  components  (Fig.  2(a)).  Wang et  al.
used triethyl borate (TEB) as a stabilizer in perovskite precurs-
or  solution  and  found  that  triethyl  borate  could  effectively
eliminate  the  impurity  phase  by  limiting  the  deprotonation
of  MAI[13].  On  this  basis,  Chen et  al.  also  used  phenylboric
acid (PBA) to stabilize the precursor solution by inhibiting the
deprotonation  of  MAI.  By  calculating  the  proportion  of
triazine  in  the  solution,  they  proved  that  PBA  can  stabilize
the  precursor  solution[17].  Seok et  al.  demonstrated  that  ele-
mental sulfur (S8)  could stabilize the precursor solution by in-
hibiting  MA+ deprotonation via amine-sulfur  coordination
(Fig.  2(b))[18].  Sulfur  in  the  precursor  solution  formed  a  com-
plex  with  MA,  thus  retaining  MA  in  the  solution  and  inhibit-
ing  the  transformation  of α-FAPbI3 to δ-FAPbI3 by  reducing
MA present  with  FA.  In  addition,  Qin et  al.  stabilized precurs-
or solution by introducing ITIC-Th into precursor solution and
stabilized  [PbI6]4

− skeleton  by  using  Pb–S  bonding,  maintain-
ing  the  appropriate  molar  ratio  of  FA  and  MA  to  form  black
α-phase perovskite. The 96 days-aged precursor solution with
ITIC-Th could be used to prepare black-phase perovskite films
(Fig. 2(c))[19]. Dong et al. effectively inhibited the irreversible de-
gradation route by removing organic amines via adding alde-
hydes (Fig. 2(d))[14].

Inhibiting  iodide  oxidation  is  also  an  approach  to  stabil-
ize  the  precursor  solution.  Wang et  al.  used  Eu3+-Eu2+ as  a
"redox shuttle" to selectively oxidize Pb0 and reduce iodine in
the  cyclic  transition[20].  Hydrazine  group  is  an  excellent  redu-
cing group and is often used in Sn-based perovskite to inhib-
it  the  oxidation  of  Sn2+.  In  Pb-based  perovskite,  Wang et  al.
and Li et  al.  demonstrated that  hydrazine  group could  inhib-
it  the  oxidation  of  iodide  ions,  and  they  used  benzylhy-
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Fig. 1. (Color online) (a) Deprotonation of MA+ and FA+. Reproduced with permission[14], Copyright 2021, American Chemical Society. (b) The addi-
tion-elimination  reaction  of  MA  and  FAI  in  perovskite  precursor  solution.  Reproduced  with  permission[13],  Copyright  2020,  Elsevier.  (c)  The
amine-cation reactions between MA and FA+ and between FA and MA+.  Gibbs free energy profiles for MA−FA+ reaction (d) and FA−MA+ reac-
tion (e). Reproduced with permission[14], Copyright 2022, American Chemical Society.

 

Fig. 2. (Color online) (a) Photos for solutions with and without DHP. Reproduced with permission[16], Copyright 2022, Wiley. (b) Mechanism for S8

to  stabilize  precursor  solution.  Reproduced  with  permission[18],  Copyright  2019,  Wiley.  (c)  Photos  for  films  from  precursor  solution  with  and
without ITIC-Th.  Reproduced with permission[19],  Copyright 2018,  Wiley.  (d)  Schiff-base reaction between organic amine and aldehyde. Repro-
duced with permission[14], Copyright 2021, American Chemical Society. (e) Schematic for BHC reducing I2/I3

– to I– during the ageing of solution. Re-
produced with permission[15], Copyright 2021, Science (AAAS). (f) Mechanism for 3-HBA to inhibit the degradation of perovskite precursor solu-
tion. Reproduced with permission[22], Copyright 2022, Wiley.
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drazine  hydrochloride  (BHC)  (Fig.  2(e))  and  4-fluorophenylhy-
drazine  hydrochloride  (4F-PHCl),  respectively[15, 21].  However,
in  the  mixed-cation  perovskite  precursor  solution,  the  oxida-
tion of iodide ions, deprotonation of organic cations and sub-
sequent  amine-cation reactions  often coincide.  It  is  crucial  to
find  a  stabilizer  that  can  inhibit  all  reactions.  In  recent  work,
Li et  al.  reported  a  stabilization  strategy  by  doping  3-hy-
drazinobenzoic  acid  (3-HBA)  with  carboxyl  (-COOH)  and  hy-
drazine  (-NHNH2)  functional  groups  into  MA+/FA+ based  pre-
cursor solution. The -NHNH2 in 3-HBA can reduce I2 defects to
I–,  thus  inhibiting  I– oxidation.  Simultaneously,  the  H+ gener-
ated by -COOH in 3-HBA through reversible equilibrium ioniza-
tion reaction can inhibit the deprotonation of organic cations
and subsequent amine-cation reaction (Fig. 2(f)). The synergist-
ic  action of  -NHNH2 and -COOH stabilized the precursor solu-
tion[22].

Nowadays,  almost  all  efforts  focus  on  improving  the
power  conversion  efficiency  (PCE)  and  the  stability  of  mixed-
cation PSCs,  e.g.  additive engineering[23, 24],  crystallization en-
gineering[25, 26], component engineering[27], interface engineer-
ing[28, 29],  film-making  technique[30, 31],  passivation[32−34],  tan-
dem  cells[35−38],  large-area  fabrication[39−41],  and  flexible
devices[42, 43].  The  precursor  ageing  issue  does  not  receive
enough  attention.  Preventing  the  degradation  of  perovskite
precursor solutions is equally important as in-device and out-
of-device  encapsulation  technology[44],  since  perovskite  pre-
cursors are usually prepared in large quantities and stored for
days or  months.  The degradation of  precursor  can negatively
affect  our  understanding  on  intrinsic  properties  of  per-
ovskites.  The  degradation  of  perovskite  precursors  will  cause
a decreased photoresponse of devices, leading to severe vari-
ability in production. We need develop effective precursor sta-
bilizers to improve the repeatability of production.
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